Saphir-Design-Thermoelement Für Hochtemperaturmessungen mit Sicherheitskammer Typ TC84

WIKA-Datenblatt TE 65.84

Weitere Zulassungen, siehe Seite 4

Anwendungen

- Vergasungsreaktoren
- GtL-Reaktoren (Gas-to-Liquids)
- Schwefelrückgewinnungsanlagen

Leistungsmerkmale

- 3 x längere Lebensdauer im Vergleich zu rein keramischen Schutzrohren durch monokristalline Struktur des Saphirsensor-Schutzrohrs
- Hohe Prozesssicherheit bei Prozessen bis zu 1.700 °C
 [3.092 °F] und 65 bar [943 psi]
- Reduzierung ungeplanter Stillstände
- Erhöhte Sicherheit durch doppeltes Dichtungssystem gegen Austritt von toxischen Messstoffen
- Kostenersparnis durch Wegfall eines Spülsystem und Reparaturmöglichkeit des Sensors

Saphirsensor mit Keramik-Außenschutzrohr, Typ TC84

Beschreibung

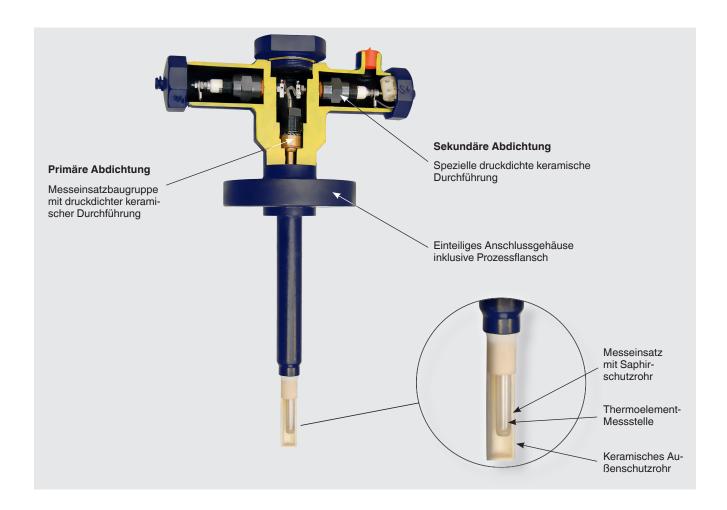
Speziell für den Einsatz in Vergasungsreaktoren wurde dieses Hochtemperatur-Thermoelement mit einem gasdichtem Saphir-Schutzrohr entwickelt. Der Saphir schützt durch die monokristalline Struktur das Edelmetall des Thermoelements vor Vergiftung durch die aggressive Atmosphäre im Vergasungsreaktor.

Diese Lösung wird seit 1997 erfolgreich in verschiedensten Reaktoren als Typ T-FZV weltweit eingesetzt. Hermetisch druckdichte Verbindungen zwischen dem Saphir und dem metallischen Schutzrohr, sowie ein mehrfaches Dichtungssystem im Anschlussgehäuße verhindern, dass toxische Gase aus dem Reaktor entweichen können.

Die hohen Temperaturen und Drücke bei den Vergasungsprozessen stellen sehr hohe Ansprüche an Schutzrohre und Thermoelemente. Diese Prozessbedingungen führen häufig zu Abschaltungen und Störungen im Betrieb. Durch das Saphir-Design können die Lebensdauer wesentlich erhöht und die Stillstandszeiten verringert werden.

WIKA-Datenblatt TE 65.84 · 03/2024

Technische Daten


Schutzmechanismen

Die primäre Abdichtung dient als Schutz gegen den Austritt von Messstoffen aus dem Prozess bei hohem Druck und hohen Temperaturen.

Die sekundäre Abdichtung ist die Absicherung im Fall einer Fehlfunktion durch nicht vorhersehbare Störgrößen der primären Dichtung.

Doppelt geschützte Sensorspitze

- Keramisches Außenschutzrohr zum Schutz vor rauen Prozessbedingungen
- Saphir-Messeinsatzschutzrohr für internen Schutz gegen Kontamination der Thermoelemente durch Diffusion

Basisinformationen	
Abmessungen	
Metallisches Stützrohr	Ø 24 mm [0,95 in]
Keramik Schutzrohr	Ø 15 mm [0,59 in]
Messeinsatz mit Schutzrohr	Ø 8 mm [0,32 in]
Stützrohrlänge SL	Min. 148 mm [5,8 in] Max. 953 mm [37,5 in]
Einbaulänge U	Min. 395 mm [15,6 in] Max. 1.200 mm [47,2 in]

¹⁾ Das Anschlußgehäuse und der Prozessflansch einschließlich der Dichtfläche werden aus Gründen des Korrosionsschutzes bei Kohlenstoffstählen pulverbeschichtet.

Messelement	
Grenzabweichung	→ Siehe Technische Information IN 00.23

Genauigkeitsangaben	
Genauigkeitsklasse nach IEC 60584-1:2013	
S	1 und 2
R	1 und 2
В	2

Prozessanschluss 1)		
Norm	■ ASME ■ EN 1092-1	
Nenngröße		
ASME	1,5 4"	
EN 1092-1	DN40 DN100	
Dichtfläche		
ASME	RF RTJ LT ST	
EN 1092-1	Form B1Form B2Form EForm C	
Werkstoff	 1.4541 1.5415 1.7335 1.7380 F11 F22 SS321 	
	→ Weitere Werkstoffe auf Anfrage	
Schutzrohr		
Schutzrohrdurchmesser	Ø 15 x 2,5 mm [Ø 0,59 x 0,10 in]	
	Ø 15 x 2 mm [Ø 0,59 x 0,08 in]	
	Ø 8 mm [Ø 0,32 in]	
Werkstoff (messstoffberührt)	Keramik C799	Tmax = 1.600 °C
	Keramik C610	Tmax = 1.500 °C
	Saphir	T max = 2.500 °C

¹⁾ Das Anschlussgehäuse wird aus geschmiedetem Stangenmaterial gefertigt. Die Prozessanschlussmaße entsprechen beispielsweise den Vorgaben der ASME und sind kompatibel mit einem Prozessflansch gemäß ASME B16.5.

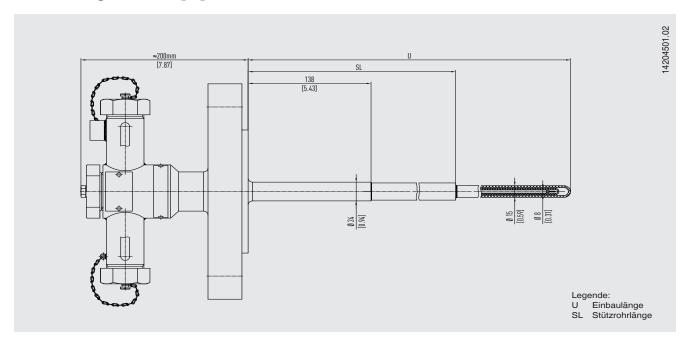
Einsatzbedingungen 1)	
Betriebstemperatur	
Typ S	Max. 1.600 °C [2.912 °F]
Typ R	Max. 1.600 °C [2.912 °F]
Тур В	Max. 1.700 °C [3.092 °F]
Umgebungstemperaturbereich	
T1 T6	-40 +80 °C [-40 +176 °F]
T1 T3	-40 +195 °C [-40 +383 °F]
Lagertemperaturbereich	-40 +200 °C [-40 +392 °F]
Druckbelastbarkeit	bis 65 bar [943 psi]

¹⁾ Die Temperaturbereiche können durch das Schutzrohrmaterial begrenzt sein.

Zulassungen

Logo	Beschreibung	Region
CE	EU-Konformitätserklärung	Europäische Union
	EMV-Richtlinie EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (Industriebereiche)	
	RoHS-Richtlinie	

Optionale Zulassungen


Logo	Beschreibung		Region
€ x	EU-Konformitätserklärung ATEX-Richtlinie Explosionsgefährdete Bereiche - Ex e Zone 2 Gas	II 3G Ex ec IIC T1 T6 Gc X	Europäische Union
IEC IECEX	IECEx (Option) Explosionsgefährdete Bereiche - Ex e Zone 2 Gas	Ex ec IIC T1 T6 Gc	International
(Ex Ukraine Metrologie, Messtechnik		Ukraine
EAC	EAC Explosionsgefährdete Bereiche - Ex e Zone 2 Gas	Ex ec IIC T1T6 Gc	Eurasische Wirtschaftsge- meinschaft
(W)	CCC Explosionsgefährdete Bereiche - Ex e Zone 2 Gas	Ex ec IIC T1T6 Gc	China
-	ECAS Explosionsgefährdete Bereiche - Ex e Zone 2 Gas	Ex ec IIC T1 T6 Gb X	Vereinigte Arabische Emirate

Zertifikate/Zeugnisse

Zertifikate/Zeugnisse		
Zeugnisse	 2.2-Werkszeugnis nach EN 10204 (z. B. Fertigung nach Stand der Technik, Werkstoffnachweis, Anzeigegenauigkeit) 3.1-Abnahmeprüfzeugnis nach EN 10204 (z. B. Werkstoffnachweis messstoffberührte metallische Teile, Anzeigegenauigkeit, Kalibrierzertifikat) 	
Kalibrierung	 Werkskalibrierschein DAkkS-Kalibrierzertifikat (rückführbar und akkreditiert nach ISO/IEC 17025) 	
Empfohlenes Kalibrierintervall	1 Jahr (abhängig von den Nutzungsbedingungen)	

[→] Zulassungen und Zertifikate siehe Webseite

Abmessungen in mm [in]

Reparatur

Die Konstruktion der Thermoelemente ist so konzipiert, dass ein defektes Element nach dem Ausbau aus dem Reaktor in den meisten Fällen im Vergleich zum Neupreis eines Thermoelements schnell und kostengünstig repariert und aufgearbeitet werden kann. Dies ist abhängig von der Art der Beschädigung sowie der Anzahl der bereits zuvor an diesem Gerät durchgeführten Reparaturen. Hierzu muss das komplette defekte Element an den Hersteller zurückgeschickt werden. Hier wird nun das Gerät vollständig demontiert, das metallische Anschlussgehäuse mit Flansch gereinigt, neu oberflächenbeschichtet, sowie beim Neuaufbau alle Dichtflächen überarbeitet. Der Anlieferungszustand des TC84 wird in einem Waren-Eingangsbericht dokumentiert. Anschließend wird das Anschlussgehäuse mit neuem Schutzrohr-Messeinsatz komplettiert und einer gemeinsamen Druckprüfung unterzogen. Ob eine Reparatur erfolgreich durchgeführt werden kann, entscheidet sich erst bei einem dieser Arbeitsschritte. Falls das Gerät nicht repariert werden kann, werden die bereits angefallenen Aufwände bis 1.000 € in Rechnung gestellt und ein Neugerät angeboten. Im Auftragsfall erfolgt eine Erstattung der Bearbeitungskosten.

Hinweis:

Es können keine einzelnen Messeinsätze geliefert und kundenseitig in das Elementgehäuse eingebaut werden, da die Druckprüfung des Thermometers ein Bestandteil der Garantieleistung ist.

Bestellangaben

Typ / Temperaturbereich / Sensor / Messstelle / Anschlussgehäuse / Gewindegröße Kabeleingang / Schutzrohr / Flansch-Nenngröße / Druckstufe / Dichtfläche / Flansch-, Halterohrmaterial / Stützrohrlänge SL / Einbaulänge U / Außenschutzrohr Keramik / Messeinsatz / Optionen

© 08/2017 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.
Bei unterschiedlicher Auslegung des übersetzten und des englischen Datenblatts ist der englische Wortlaut maßgebend.

WIKA-Datenblatt TE 65.84 · 03/2024

Seite 5 von 5

www.wika.de